首页> 外文OA文献 >Pareto or Non-Pareto: Bi-Criterion Evolution in Multi-Objective Optimization
【2h】

Pareto or Non-Pareto: Bi-Criterion Evolution in Multi-Objective Optimization

机译:帕累托或非帕累托:多目标优化中的双准则进化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

It is known that Pareto dominance has its own weaknesses as the selection criterion in evolutionary multi-objective optimization. Algorithms based on Pareto dominance can suffer from slow convergence to the optimal front, inferior performance on problems with many objectives, etc. Non-Pareto criterion, such as decomposition-based criterion and indicator-based criterion, has already shown promising results in this regard, but its high selection pressure may lead the algorithm to prefer some specific areas of the problem’s true Pareto front, especially when the front is highly irregular. In this paper, we propose a bi-criterion evolution framework of Pareto criterion and non-Pareto criterion, which attempts to make use of their strengths and compensates for each other’s weaknesses. The proposed framework consists of two parts, Pareto criterion evolution and non-Pareto criterion evolution. The two parts work collaboratively, with an abundant exchange of information to facilitate each other’s evolution. Specifically, the non-Pareto criterion evolution leads the Pareto criterion evolution forward and the Pareto criterion evolution compensates the possible diversity loss of the non-Pareto criterion evolution. The proposed framework keeps the freedom on the implementation of the non-Pareto criterion evolution part, thus making it applicable for any non-Pareto-based algorithm. In the Pareto criterion evolution, two operations, population mainte- nance and individual exploration, are presented. The former is to maintain a set of representative nondominated individuals, and the latter is to explore some promising areas which are undeveloped (or not well-developed) in the non-Pareto criterion evolution. Experimental results have shown the effectiveness of the proposed framework. The bi-criterion evolution works well on seven groups of 42 test problems with various characteristics, including those where Pareto-based algorithms or non-Pareto- based algorithms struggle.
机译:众所周知,帕累托优势作为演化多目标优化中的选择标准具有其自身的弱点。基于帕累托优势的算法可能会收敛到最优前沿的速度较慢,在具有多个目标的问题上的性能会较差,等等。非帕累托准则,例如基于分解的准则和基于指标的准则,在这方面已经显示出令人鼓舞的结果,但是其较高的选择压力可能会使算法更喜欢问题的真实Pareto前沿的某些特定区域,尤其是在前沿高度不规则的情况下。在本文中,我们提出了帕累托准则和非帕累托准则的双标准演化框架,试图利用它们的优势并弥补彼此的弱点。所提出的框架包括两部分,帕累托准则演化和非帕累托准则演化。这两个部分协同工作,通过大量信息交换来促进彼此的发展。具体而言,非帕累托准则演化导致了帕累托准则演化向前,而帕累托准则演化补偿了非帕累托准则演化的可能多样性损失。所提出的框架在非帕累托准则演化部分的实现上保持了自由,从而使其可用于任何非基于帕累托的算法。在帕累托准则演化中,提出了两种操作,即种群维护和个体勘探。前者将维持一组有代表性的非支配个人,而后者将探索一些在非帕累托标准演化中尚未开发(或未充分开发)的有前途的领域。实验结果表明了该框架的有效性。双标准演化在具有各种特征的7组42个测试问题上表现良好,包括那些基于Pareto的算法或基于非Pareto的算法难以解决的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号